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Recovering signals of ghost archaic introgression in
African populations
Arun Durvasula1 and Sriram Sankararaman1,2,3,4*

While introgression from Neanderthals and Denisovans has been documented in modern humans outside Africa,
the contribution of archaic hominins to the genetic variation of present-day Africans remains poorly understood.
We provide complementary lines of evidence for archaic introgression into four West African populations. Our
analyses of site frequency spectra indicate that these populations derive 2 to 19% of their genetic ancestry from
an archaic population that diverged before the split of Neanderthals and modern humans. Using a method that
can identify segments of archaic ancestry without the need for reference archaic genomes, we built genome-wide
maps of archaic ancestry in the Yoruba and the Mende populations. Analyses of these maps reveal segments of
archaic ancestry at high frequency in these populations that represent potential targets of adaptive introgression.
Our results reveal the substantial contribution of archaic ancestry in shaping the gene pool of present-day West
African populations.
ow
n

http://advances.sciencem
ag

loaded from
 

INTRODUCTION
Admixture has been a dominant force in shaping patterns of genetic
variation in human populations (1). Comparisons of genome sequences
from archaic hominins to those from present-day humans have doc-
umented multiple interbreeding events, including gene flow from
Neanderthals into the ancestors of all non-Africans (2), fromDenisovans
into Oceanians (3) and eastern non-Africans (4, 5), as well as from
early modern humans into the Neanderthals (6). However, the sparse
fossil record and the difficulty in obtaining ancient DNA have made it
challenging to dissect the contribution of archaic hominins to genetic
diversity within Africa. While several studies have revealed contribu-
tions from deep lineages to the ancestry of present-day Africans (7–12),
the nature of these contributions remains poorly understood.
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RESULTS
We leveraged whole-genome sequence data from present-day West
African populations and archaic hominins to compute statistics that
are sensitive to introgression in the history of these populations. Spe-
cifically, we tabulated the distribution of the frequencies of derived
alleles (where a derived allele is determined relative to an inferred hu-
man ancestor) in the analyzed African populations at single-nucleotide
polymorphisms (SNPs) for which a randomly sampled allele from an
archaic individual was observed to also be derived. Theory predicts
that this conditional site frequency spectrum (CSFS) is expected to
be uniformly distributed when alleles are neutrally evolving under a
demographic model in which the ancestor of modern and archaic
humans, assumed to be at mutation-drift equilibrium, split with no
subsequent gene flow between the two groups (13, 14). This expec-
tation is robust to assumptions about changes in population sizes in
the history of modern human or archaic populations. Further, we
show that this expectation holds even when there is population
structure or gene flow in the history of the archaic population (see
Materials and Methods).

We computed CSFSYRI,N: the CSFS in the Yoruba from Ibadan
(YRI) while restricting to SNPs where a randomly sampled allele from
the high-coverage Vindija Neanderthal (N) genome was observed to be
derived (15). In contrast to the uniform spectrum expected from theory,
we observe that the CSFSYRI,N has a U-shape with an elevated propor-
tion of SNPs with low- and high-frequency–derived alleles relative to
those at intermediate frequencies (Fig. 1 and fig. S4). The CSFS is nearly
identical when we replace the Vindija Neanderthal genome with the
high-coverage Denisova genome (Fig. 1 and fig. S4) (4). We observed
a similar U-shaped CSFS in each of three additional West African
populations [Esan in Nigeria (ESN), Gambian in Western Divisions in
the Gambia (GWD), and Mende in Sierra Leone (MSL)] included in
the 1000 Genomes Phase 3 dataset (fig. S4).

Mutational biases, errors in determining either the ancestral or the
archaic allele, or recurrent mutation could produce the observed CSFS.
We confirmed that the shape of the CSFSYRI,N was robust to the in-
clusion of only transitionmutations, only transversionmutations, to the
exclusion of hypermutable CpG sites (fig. S7), as well as when we com-
puted the spectrumon the Yoruba genomes separately sequenced in the
1000 Genomes Phase 1 dataset (fig. S7).

We verified that this signal was robust to changes in recombination
rate and background selection by restricting to regions that are likely to
be evolving neutrally (by restricting to sites with estimates of
background selection, B statistic, >800). We also assessed the effect of
biased gene conversion by excluding weak-to-strong and strong-to-
weak polymorphisms. We found that the U-shaped signal is robust to
variation in recombination rate, background selection, and biased gene
conversion (fig. S10). Errors in determining the ancestral allele could
make low-frequency ancestral alleles appear to be high-frequency–
derived alleles and vice versa and thus could potentially lead to a
U-shaped CSFS. However, the shape of the CSFS remains qualitatively
unchanged when we used either the chimpanzee genome or the con-
sensus across the orangutan and chimpanzee genomes to determine
the ancestral allele (fig. S9).We simulated both ancestral allele misiden-
tification and errors in genotype calling in the high-coverage archaic
genome. A fit to the data required both a 15% ancestral misidentification
rate and a 3% genotyping error rate in the archaic genome, substantially
larger than previous estimates of these error rates [1% for ancestral
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misidentification rate in the Enredo-Pecan-Ortheus (EPO) ancestral
sequence (16) and 0.6% for the modern human contamination in
the Vindija Neanderthal (15)] (section S1.1 and fig. S11). To explore
the contribution of recurrent mutations, we used forward-in-time
simulations that allow for recurrent mutations: The simulated CSFS
does not resemble the U-shaped CSFS that we see in data (fig. S43).
Together, these results indicate that the U-shaped CSFS observed in
the African populations is not an artifact.

To determine whether realistic models of human history can ex-
plain theCSFS, we compared theCSFS estimated fromcoalescent sim-
ulations to the observed CSFSYRI,N using a goodness-of-fit test (see
Materials and Methods and section S2). We augmented a model of
the demographic history of present-day Africans (17) with a model of
the history of Neanderthals and Denisovans inferred by Prüfer et al.
(15) (Fig. 1 and figs. S1 and S16). This model includes key interbreed-
ing events between Neanderthals, Denisovans, and modern human
populations such as the introgression from Neanderthals into non-
Africans, from early modern humans into Neanderthals (6), and into
theDenisovans froman unknown archaic population (18). The result-
Durvasula and Sankararaman, Sci. Adv. 2020;6 : eaax5097 12 February 2020
ing model fails to fit the observed CSFSYRI,N [P value of a Kolmogorov-
Smirnov (KS) test on the residuals being normally distributed
P < 2 × 10−16]. Extensions of this model to include realistic variation
inmutation and recombination rates along the genome (KSP<2×10−16;
fig. S12 and section S1) and low levels of Neanderthal DNA introduced
into African populations via migration between Europeans and Africans
do not provide an adequate fit (KS P < 2 × 10−16; Fig. 1 and section S1)
nor does amodel of gene flow betweenYRI and pygmypopulations that
has been proposed previously (KS P < 2 × 10−16; fig. S12 and section S1)
(19). The expectation that theCSFS is uniformly distributed across allele
frequencies relies on an assumption ofmutation-drift equilibrium in the
population ancestral to modern humans, Neanderthals, and Denisovans.
We confirmed that violations of this assumption (due to bottlenecks,
expansions, and population structure in the ancestral population) were
also unable to fit the data (KS P < 2 × 10−16 for all models; section S2,
table S3, and fig. S17).

Given that none of the current demographic models are able to fit
the observed CSFS, we explored models where present-day West
Africans trace part of their ancestry to (A) a population that split from
their ancestors after the split between Neanderthals and modern
humans, (B) a population that split from the ancestor of Neanderthals
after the split between Neanderthals and modern humans, or (C) a
population that diverged from the ancestors of modern humans and
Neanderthals before the ancestors of Neanderthals and modern
humans split from each other (fig. S2 and section S3). Each of these
models of admixture (which we refer to as models A, B, and C, respec-
tively) can yield a U-shaped CSFS. The increase in the counts of low
derived allele frequency SNPs is largely due to the introduction of the
derived allele from the introgressing population at sites that are fixed for
the ancestral allele. The increase in the counts of the high-frequency
SNPs is largely due to the introduction of the ancestral alleles at sites
that are fixed for the derived allele.

A search for the parameters for models A and B that produce the
best fit to the CSFS results in a trifurcation, i.e., models in which the
introgressing population splits off from the modern human population
at the same time as the modern human–Neanderthal. Models A and B
fail to fit the observed CSFS even at their most likely parameter esti-
mates (KS P = 3.3 × 10−15 and P = 5.6 × 10−6, respectively; section
S3) because of insufficient genetic drift in the African population since
the split from the introgressing population (section S4.2). In addition,
we show in appendix B that the spectrum for model A is expected to be
symmetric, which is not observed in the data (Fig. 1). Model C, on the
other hand, is consistent with the data (KS P = 0.09), suggesting that
part of the ancestry of present-day West Africans must derive from a
population that diverged before the split time of Neanderthals and
modern humans. In addition to the goodness-of-fit tests, we examined
the likelihood of the best-fit parameters for each of the models and
found that model C provides a significantly better fit than other models
(model C having a higher composite log likelihood than the next best
modelDLL=LLNextbestmodel−LLC=−6806whenwe condition on the
Vindija Neanderthal genome and DLL = −6240 when we condition on
the Denisovan genome; table S4 and Materials and Methods). Our
analyses provide support for a contribution to the genetic ancestry of
present-day West African populations from an archaic ghost popula-
tion whose divergence from the ancestors of modern humans predates
the split of Neanderthals and modern humans.

We applied approximate Bayesian computation (ABC) to the CSFS
to refine the parameters of our most likely demographic model (model
C) (sectionS5).Given the largenumberof parameters in thisdemographic
Fig. 1. Demography relating known and proposed archaic lineages to mod-
ern human populations. (A) Basic demographic model with CSFS fit. W Afr, West
Africans; Eur, European; N, Neanderthal; D, Denisovan; UA, unknown archaic [see
(18)]. Below, we show the CSFS in the West African YRI when restricting to SNPs
where a randomly sampled allele from the high-coverage Vindija Neanderthal
was observed to be derived [Neanderthal (data)], as well as where a randomly
sampled allele from the high-coverage Denisovan genome was observed to be
derived [Denisovan (data)]. We also show the CSFS under the proposed model
[Neanderthal (model) and Denisova (model)]. Migration between Europe and
West Africa introduces an excess of low-frequency variants but does not capture
the decrease in intermediate frequency variants and increase in high-frequency
variants. (B) Newly proposed model involving introgression into the modern hu-
man ancestor from an unknown hominin that separated from the human ances-
tor before the split of modern humans and the ancestors of Neanderthals and
Denisovans. Below, we show the CSFS fit from the proposed model, which
captures the U-shape observed in the data.
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model, we fixed parameters that had previously been estimated (15) and
jointly estimated the split time of the introgressing archaic population
from the ancestors of Neanderthals and modern humans, the time of
introgression, the fraction of ancestry contributed by the introgressing
population, and its effective population size. We determined the pos-
teriormean for the split time to be 625,000 years before the present (B.P.)
[95% highest posterior density interval (HPD): 360,000 to 975,000], the
admixture time to be 43,000 years B.P. (95% HPD: 6000 to 124,000),
and the admixture fraction to be 0.11 (95%HPD: 0.045 to 0.19). Analy-
ses of three other West African populations (ESN, GWD, and MSL)
yielded concordant estimates for these parameters (Fig. 2 and table S7).
Combining our results across theWest African populations, we estimate
that the archaic population split from the ancestor of Neanderthals and
modern humans 360 thousand years (ka) to 1.02 million years (Ma)
B.P. and subsequently introgressed into the ancestors of present-day
Africans 0 to 124 ka B.P. contributing 2 to 19% of their ancestry. We
caution that the true underlying demographic model is likely to be
more complex. To explore aspects of this complexity, we examined
the possibility that the archaic population diverged at the same time
as the split time ofmodern humans andNeanderthals and found that
this model can also produce a U-shaped CSFS with a likelihood that
is relatively high, although lower than that of our best-fit model
(DLL = −2713 for the Neanderthal CSFS and DLL = −2597 for
the Denisovan CSFS, KS P ≤ 2.9 × 10−6). Our estimates of a large
Durvasula and Sankararaman, Sci. Adv. 2020;6 : eaax5097 12 February 2020
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effective population size in the introgressing lineage (posterior mean
of 25,000; 95% HPD: 23,000 to 27,000) could indicate additional struc-
ture.We find that theNe of the introgressing lineage in YRI andMSL is
larger than that in the other African populations, possibly due to a dif-
ferential contribution from a basal West African branch (20).

While we have chosen to represent the genetic contribution of the
African ghost population as a single discrete interbreeding event, amore
realisticmodel could include low levels of gene flow in a structured pop-
ulation over an extended period of time. Previously proposedmodels
of ancestral structure in Africa do not fit the CSFS [KS P < 2 × 10−16

for the model described in (21) and KS P < 2 × 10−16 for the model
proposed in (14); fig. S18], although we observe that the model of
ancestral structure proposed by Yang et al. does produce a slight
U-shape. We explored additional models of population structure
in Africa (22) in which a lineage split from the ancestor of the modern
humans with split times ranging from 100 to 550 ka B.P. and continued
to exchange genes with themodern human population until the present
withmigration rates ranging from 2.5 × 10−5 to 2 × 10−2 migrants per
generation. While these models of continuous gene flow produce a
U-shaped CSFS for low migration rates and deep splits, they do not
provide an adequate fit to the empirical CSFS over the range of param-
eters considered (KS P ≤ 2.3 × 10−5; section S6 and figs. S14 and
S15). We used our ABC framework to explore a more detailed model
of continuous migration in which we varied split time, migration
rate, and effective population size of the introgressing lineage. Simula-
tions under the best fitting model produce a CSFS that does not ade-
quately fit the data (KS P = 1.83 × 10−6). A possible reason why the
continuous migration models that we have explored do not fit the data
is that these models can be considered as extensions of model A with
multiple admixture events. We have shown that these models can only
produce symmetric CSFS, unlike the CSFS that we observe in the data
(appendix B). Thus, deep population structure within Africa alone can-
not not explain the data (section S6).

Given the uncertainty in our estimates of the time of introgres-
sion, we wondered whether jointly analyzing the CSFS from both the
CEU (Utah residents with Northern and Western European ances-
try) and YRI genomes could provide additional resolution. Under
model C, we simulated introgression before and after the split between
African and non-African populations and observed qualitative differ-
ences between the twomodels in the high-frequency–derived allele bins
of the CSFS in African and non-African populations (fig. S40). Using
ABC to jointly fit the high-frequency–derived allele bins of the CSFS in
CEU and YRI (defined as greater than 50% frequency), we find that
the lower limit on the 95% credible interval of the introgression time
is older than the simulated split between CEU and YRI (2800 versus
2155 generations B.P.), indicating that at least part of the archaic
lineages seen in the YRI are also shared with the CEU (section S9.2).

We then attempted to understand the fine-scale distribution of
archaic ghost ancestry along the genomes of present-day Africans.
We used a recently developed statistical method (ArchIE) that com-
bines multiple population genetic statistics to identify segments of
diverged ancestry in 50 YRI and 50 MSL genomes without the need
for an archaic reference genome (section S7) (23). Briefly, the method
uses summary statistics computed from present-day genome sequences
as input to a logistic regression model to estimate the probability that a
haploid segment of an individual genome (defined as a contiguous
region of length 50 kilobases) is archaic. While the parameters of the
model are estimated by simulating data under amodel that closelymatches
the demographic history relating Neanderthals and non-Africans, we
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Fig. 2. ABC estimates of the demographic parameters of the archaic ghost
population across four West African populations (YRI, ESN, GWD, and MSL).
Posterior means are denoted by diamonds, and 95% credible intervals are de-
noted by lines. (A) The admixture time ta, (B) the admixture fraction a, (C) the
split time of the introgressing population ts, and (D) the effective population size
of the introgressing population Ne are shown. The parameter estimates are largely
consistent across the African populations: We estimate split times of 360 ka to
1.02 Ma B.P., admixture times of 0 to 124 ka B.P., admixture fractions that range
from 0.02 to 0.19, and effective population sizes that range from 22,000 to 28,000.
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found that ArchIE has 68% power to detect archaic segments at a false
discovery rate of about 7% under our best-fit demographic model,
confirming that its inferences are robust and sensitive to archaic intro-
gression in Africa.

On average, ≃6.6 and ≃7.0% of the genome sequences in YRI and
MSL were labeled as putatively archaic in ancestry. We sought to test
whether the putatively archaic segments identified in YRI and MSL
traced their primary ancestry to other African populations (8–10) or
to known archaic hominins such as the Neanderthals or Denisovans.
We computed the divergence of these segments to a genome sequence
from each of six populations: southern African KhoeSan, Jul‘hoan; two
Central African pygmy populations (Biaka andMbuti); and two archaic
hominin populations (Neanderthal and Denisovan). We expect seg-
ments introgressed from any of these populations to be less diverged
relative to nonarchaic segments. On the contrary, the putatively archaic
segments are more diverged, consistent with their source not being any
of these populations (Fig. 3C and section S7.1). Merging the putatively
archaic segments across individual genomes, we obtained a total of 482
and 502 Mb of archaic genome sequence in the YRI and MSL, respec-
tively.We estimated the distribution of the time to themost recent com-
mon ancestor (TMRCA) between segments labeled archaic and those
Durvasula and Sankararaman, Sci. Adv. 2020;6 : eaax5097 12 February 2020
labeled nonarchaic using the pairwise mode of multiple sequentially
Markovian coalescent (MSMC) (Fig. 3B and section S7.2) (24) and
observed that the TMRCA is larger for the putatively archaic class of
segments. Specifically, we find that the median nonarchaic segment
coalescent time is 0.865 Ma ago for both populations, while the
median archaic segment coalescent time is 1.51 Ma ago for YRI and
1.15 Ma ago for MSL (1.69- and 1.23-fold increases in age for YRI
and MSL, respectively).

We examined the frequencies of archaic segments to investigate
whether natural selection could have shaped the distribution of archaic
alleles (fig. S40). We found 33 loci with an archaic segment frequency
of ≥50% in the YRI (a cutoff chosen to be larger than the 99.9th
percentile of introgressed archaic allele frequencies based on a neutral
simulation of archaic introgressionwith parameters related to the time
of introgression and admixture fraction chosen conservatively to max-
imize the drift since introgression; section S7.3 and fig. S40) and 37 loci
in the MSL. Some of these genes are at high frequency across both the
YRI and MSL, including NF1, a tumor suppressor gene (83% in YRI,
85% inMSL),MTFR2, a gene involved with mitochondrial aerobic res-
piration in the testis (67% in YRI, 78% in MSL), HSD17B2, a gene
involved with hormone regulation (74% in YRI, 68% inMSL),KCNIP4,
which is a gene involved with potassium channels (73% in YRI, 69% in
MSL), and TRPS1, a gene associated with trichorhinophalangeal syn-
drome (71% in YRI, 75% in MSL; Table 1). Three of these genes have
been found in previous scans for positive selection in the YRI: NF1
(25, 26), KCNIP4 (27), and TRPS1 (28). On the other hand, we do not
find elevated frequencies at MUC7, a gene previously found to harbor
signatures of archaic introgression (29).
DISCUSSION
Our analyses document introgression in four present-dayWest African
populations from an archaic population that likely diverged before
the split of modern humans and the ancestors of Neanderthals and
Denisovans. A number of previous studies have found evidence for
Fig. 3. Analysis of segments of archaic ghost ancestry found in the Yoruba
and Mende populations. (A) Inference of segments of archaic ancestry was per-
formed with ArchIE. ArchIE proceeds by simulating data under a model of archaic
introgression, calculating population genetic summary statistics, and training a
model to predict the probability that a 50-kb window in an individual comes from
an archaic population. We apply the resulting predictor to genome sequences
from the Yoruba and Mende populations. (B) Comparison of TMRCA between
inferred archaic and nonarchaic segments to the TMRCA of a pair of nonarchaic
segments in the Yoruba. On average, archaic segments are 1.69× older than non-
archaic segments. (C) Estimates of the divergence times of archaic segments
inferred in Yoruba from KhoeSan, Jul‘hoan, two modern human pygmy genomes
(Mbuti and Biaka), and Neanderthal and Denisovan genomes compared to
divergence times of nonarchaic segments. P values are computed via block
jackknife. Archaic segments are more diverged from all six genomes than non-
archaic segments.
Table 1. Genes harboring a high frequency of archaic segments in the
Yoruba and Mende populations. Genes were selected by ranking the
union of the set of putative archaic segments by frequency in either
the Mende or Yoruba population and selecting the top 10 genes. Genes in
bold denote frequencies greater than 50% in the respective population.
Chromosome
 Gene name

Frequency
(Yoruba)
Frequency
(Mende)
Gene type
chr1
 RP11-286M16.1
 0.84
 0.81
 lincRNA
chr4
 KCNIP4
 0.73
 0.69
 Protein coding
chr6
 MTFR2
 0.67
 0.78
 Protein coding
chr8
 TRPS1
 0.71
 0.75
 Protein coding
chr12
 RP11-125N22.2
 0.12
 0.88
 Pseudogene
chr16
 HSD17B2
 0.74
 0.68
 Protein coding
chr17
 NF1
 0.83
 0.85
 Protein coding
chr17
 KRT18P61
 0.84
 0.36
 Pseudogene
chr21
 MIR125B2
 0.76
 0.64
 MicroRNA
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deeply diverged lineages contributing genetic ancestry to the Pygmy
(8, 9) and Yoruba (7, 30) populations. Analyses of ancient African
genomes have revealed that stone-age hunter-gatherers from South
Africa diverged from other modern-day populations >260,000 years
(31) B.P. and that present-day West African populations trace part of
their ancestry to a basal lineage that diverged before the split of the
southernAfrican San (20) (although an alternativemodel consistent with
their data includes a complex pattern of isolation by distance between
western, eastern, and southernAfrican populations). Placing our results
within the context of the complex patterns of deep divergences in the
African populations will require the analysis of a diverse set of African
populations that include the southern African San populations, as well
as the inclusion of ancient African genomes that lack signals of recent
admixture that are present in the present-day San populations (32).

One interpretation of the recent time of introgression that we
document is that archaic forms persisted in Africa until fairly recently
(33). Alternately, the archaic population could have introgressed earlier
into a modern human population, which then subsequently interbred
with the ancestors of the populations that we have analyzed here. The
models that we have explored here are not mutually exclusive, and it is
plausible that the history of African populations includes genetic con-
tributions from multiple divergent populations, as evidenced by the
large effective population size associated with the introgressing archaic
population. Relatively, recent fossils with archaic features (or combina-
tions of archaic and modern human features) have been found in the
fossil record in Africa and theMiddle East.While anatomically modern
humans appear in the fossil record around200,000 years ago, fossilswith
a combination of archaic andmodern features can be found across sub-
Saharan Africa and theMiddle East until as recently as 35,000 years ago
(34). Examples of these fossils include a cranium from Iwo Eleru (33)
and human remains from Ishango (35) that have been interpreted as
being consistentwith deep structure and representing a complex history
of interaction between modern and archaic hominins in Africa.

The signals of introgression in the West African populations that
we have analyzed raise questions regarding the identity of the archaic
hominin and its interactions with the modern human populations in
Africa. Analysis of the CSFS in the Luhya from Webuye, Kenya
(LWK) also reveals signals of archaic introgression, although our inter-
pretation is complicated by recent admixture in the LWK that involves
populations related to western Africans and eastern African hunter-
gatherers (section S8) (20). Non-African populations (Han Chinese in
Beijing and Utah residents with northern and western European an-
cestry) also show analogous patterns in the CSFS, suggesting that a
component of archaic ancestry was shared before the split of African
and non-African populations. A detailed understanding of archaic in-
trogression and its role in adapting to diverse environmental conditions
will require analysis of genomes from extant and ancient genomes
across the geographic range of Africa.
MATERIALS AND METHODS
Conditional site frequency spectrum
We define the CSFS, CSFSYRI,N, as the histogram of the counts of
derived alleles in population pop1 conditional on observing a derived
allele in a related outgroup pop2 (13). We define ck as the number of
SNPs at which the derived allele is present on k chromosomes in a sam-
ple of n total chromosomes in pop1, while a single chromosome in the
outgroup pop2 carries a derived allele. CSFSYRI,N is the vector of counts
ck for k ∈ {1…n − 1}.
Durvasula and Sankararaman, Sci. Adv. 2020;6 : eaax5097 12 February 2020
Chen et al. (13) showed that if the ancestor of populations pop1 and
pop2 is at mutation-drift equilibrium (i.e., the site frequency spectrum
in the ancestor isf ðxÞº 1

x , where 0 < x < 1 is the derived allele frequency
at a polymorphic SNP) and the two populations pop1 and pop2 split
with no subsequent admixture, then the CSFSYRI,N is expected to be
uniform, i.e., CSFSYRI,N (k) = constant. This result does not depend on
any additional aspects of the demographic history of either popula-
tions pop1 or pop2, except that they are randomly mating. We used
the CSFS to study introgression in present-day Africans where we
set pop1 to present-day Africans and pop2 to an archaic population,
i.e., Neanderthal or Denisovan.

One of the complications in applying the CSFS to learn about the
history of present-day Africans arises from known departures from a
simple model of isolation with no subsequent admixture. However,
we considered the possibility of structure in the archaic population.
This structure could have several forms that include the ancestral
Neanderthal population being structured or it could involve gene flow
from early modern humans into Neanderthals (6), or as in the case of
Denisovans, this could include gene flow from a highly diverged archaic
population (18). We performed extensive simulations to show that
structure in the archaic population continues and also leads to a
uniform CSFS (section S1). Further, in appendix A, we show that the
CSFS is uniform even if there is structure in the archaic population.
However, structure within population the African population (pop1)
since its split from the archaic population (pop2), e.g., due to admixture,
is expected to produce deviations from the uniform CSFS.

Data processing
For our primary analyses of the CSFS, we used the 1000 Genomes
Phase 3 dataset (release 20130502) (36), the high-coverage Vindija
Neanderthal genome (15), and the high-coverage Denisovan ge-
nome (4). We used the annotated ancestral alleles provided by the
1000Genomes consortiumand analyzed only autosomal SNPs.Archaic
genotypes (Vindija andDenisovan) come from the pipeline described in
(15), which used snpAD for SNP calling [see S3 in (15)], and required a
mapping quality of≥25 and a mappability filter of 100. We did not ap-
ply an additional genotype quality filter for the data presented in fig. S4.
However, we tested the sensitivity of the spectrum to the choice of geno-
type quality filters in the archaic when using a GQ (Genotype Quality)
filter of ≥30 and ≥50 and see very little difference in the shape of the
spectrum (fig. S8).

In addition, we also computed the CSFS using the chimpanzee
genome to polarize the ancestral alleles (fig. S9A) (37).We dropped sites
in cases where the chimpanzee allele did not match either human allele.
As a further check, we also repeated the analysis restricting only to
sites where the chimpanzee and orangutan genomes have matching
alleles (38). These results are reported in fig. S9B. Last, we repeated our
analysis filtering out CpG hypermutable sites using the CpG annota-
tions from (18).

CSFS from the 1000 Genomes data
We computed CSFSYRI,N where pop1 is a modern human population
and pop2 is an archaic population. Specifically, we chose pop1, in turn,
to be the Yoruba from Nigeria (YRI), MSL, ESN, and GWD, while we
chose pop2 to be either the high-coverage Vindija Neanderthal or the
high-coverage Denisovan genome (fig. S4).

We computed theCSFS from the 1000Genomes phase 3 data (36) for
each of the four African populationsmentioned above (fig. S4), as well as
for the CEPH CEU and Han Chinese from Beijing (CHB) (fig. S6).
5 of 9

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on F
ebruary 14, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

For all populations, we observed a U-shaped spectrum with an ex-
cess of derived alleles at low and high frequencies. In the African popu-
lations, we observed that the CSFS from conditioning on theDenisovan
is nearly identical to the Vindija Neanderthal except at the lowest-
frequency bins, where there is an excess of counts for the Neanderthal
CSFS. We interpreted this difference as suggestive of low levels of
Neanderthal-related ancestry in these populations consistent with pre-
vious studies (18). In CEU and CHB, we also observed a U-shaped
spectrum for both the Vindija Neanderthal and Denisovan, but with a
more pronounced difference between the Neanderthal and Denisovan
spectra, i.e., an excess of counts in the low-frequency–derived siteswhen
conditioned on the Vindija Neanderthal relative to the Denisovan. This
difference is likely reflective of the Neanderthal introgression event
experience by populations outside of Africa around 50,000 years ago
(21, 39). Section S8 explores the implication of observing a U-shaped
CSFS in African and non-African populations.

To determine the robustness of the shape of the CSFS, we recom-
puted the CSFS in YRI using only transitions, transversions, and after
removing CpG sites. We found very similar U-shaped CSFS across
thesemutation classes (fig. S7). In addition, we checkedwhether biased
gene conversion could cause this signal by removing weak-to-strong
and strong-to-weak polymorphisms. We found that the shape of the
CSFS remains without these mutations (fig. S10A). Last, we checked
whether the shape of the CSFS was driven by selection or low recom-
bination rates.We used B values from (40), which estimate howmuch
background selection has reduced diversity. We restricted to regions
of the genome in the top quintile of B values (that is, the top one-fifth
of neutral sites; B ≥ 800) and recomputed the spectrum using YRI
individuals. We found that the shape remains the same after this
filtering (fig. S10B).

Model comparison
We used coalescent simulations to assess whether a demographic
model produces a CSFS that matches the empirical CSFS. To assess
the fit of a given demographic model M to the data, we compared
the CSFS computed on the data simulated under M to that com-
puted on the empirical data. We considered a model in which the
empirical CSFS was obtained by sampling from the CSFS computed
on the simulated data. For these fits, we modeled the proportion of
SNPs that contain a given number k of derived alleles rather than
the number of SNPs. To assess the fit of the simulated CSFS under
M (SM) to the observed CSFS (O), we used a multinomial compos-
ite likelihood

LðMÞ ¼ PðO∣SMÞ ¼
Yn�1

k¼1

Sk

∑kSk

� �Ok

Here, k indexes the derived allele count, Sk denotes the number of
SNPs with k-derived alleles observed in the simulated CSFS, whileOk

denotes the number of SNPs with k-derived alleles observed in the
empirical CSFS. We caution that L is a composite likelihood that
ignores the dependence among SNPs so that comparisons of Lmust
be interpreted with caution. In the results presented here, we re-
ported the log likelihood (LL).

Goodness of fit
We defined a goodness-of-fit statistic that we used to assess whether
the CSFS computed under a demographic model explains the major
Durvasula and Sankararaman, Sci. Adv. 2020;6 : eaax5097 12 February 2020
patterns of the empirical CSFS. The goodness-of-fit statistic was
defined from the residuals obtained by trying to fit the simulated
CSFS to the empirical CSFS. We assumed that the counts of SNPs
in each derived allele frequency bin of the empirical CSFS follow a
binomial distribution with a mean given by the proportion of SNPs
that have the same derived allele frequency in the simulated CSFS.
One complication is that the counts across bins of derived allele fre-
quencies are not independent because of linkage disequilibrium. To
account for this complication, we attempted to estimate the effective
number of independent observations in the observed CSFS (rather
than assume that each SNP is an independent observation). We de-
fine the residual for bin k as

rk ¼ ffiffiffiffiffiffiffiffi
meff

p ok � skffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
skð1� skÞ

p

Here,meff is the effective number of independent SNPs, ok repre-
sents the proportion of SNPs with derived allele count k in the em-
pirical CSFS, sk is the proportion of SNPs with derived allele count k
in the simulated CSFS, and k indexes the count of derived allele.
These residuals are expected to be approximately normally distrib-
uted when the number of observations is large (as is the case with the
CSFS where each bin has >1000 observations).meff is a scaling factor
to ensure that the residuals are standardized.

To calculate meff, we used two replicate whole-genome simulations
(3 GB) under the same demographicmodel and set one as the observed
data and one as the simulation.We divided the number of bins n by the
sum of the squared residuals

meff ¼ n

∑n

k¼1

ok�skffiffiffiffiffiffiffiffiffiffiffiffi
skð1�skÞ

p� �2

A good fit will result in approximately normally distributed resi-
duals, while poor fits will deviate significantly from a normal
distribution. To obtain a formal test of fit, we used a KS test comparing
the distribution of the residuals to a normal distribution. P values that
reject the null hypothesis suggest that the model is a poor fit to the data.
We used bins of allele counts ranging from 11 to 90, excluding the
lowest- and highest-frequency bins as the counts from these bins are
more likely to be affected by unmodeled genotyping errors, leading to
false rejections of the null hypothesis. To assess the fit of a class of
models (e.g., models A, B, and C), we report the P value of the model
with parameter estimates obtained via ABC (sections S3.1 to S3.6).

Last, we expanded the range of derived allele counts in our
goodness-of-fit computation from [11, 90] to [6, 95] (table S8). While
none of the models fit adequately, model C has substantially higher
P values than the othermodels, indicating that it continues to explain
the CSFS better across this range of allele counts. The lack of fit across
the expanded range of derived allele counts is likely due to unmodeled
complexities in the underlying demographic history, as well as error
processes that affect the low- and high-frequency SNPs.

Model fitting
We used ABC to fit a demographic model to the CSFS of each African
population using the R package abc (41). Using amodel relatingAfrican
and non-African populations with the Neanderthal and Denisovan
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lineages as a base, we fit the split time, admixture time, admixture frac-
tion, and effective population size of an introgressing lineage (section
S5.2).We drew values for each of the parameters from a previous dis-
tribution, simulated 300 Mb using ms (42), and computed the CSFS
for the resulting simulation. We repeated this procedure 75,000 times.
We used the “neuralnet” setting in the R package abc to compute
posterior distributions over each of the four parameters with a tolerance
of 0.005. For the admixture time and split time, we report the posterior
distributions in units of years by convolving the posterior generation
timewith a uniform distribution over [25, 33] to incorporate uncertain-
ty in the generation time.

Local ancestry inference
We used ArchIE (23) to infer the segments of the genomes in 50 YRI
and 50 MSL individuals who likely trace their ancestry to an archaic
population.We trainedArchIE on amodelwhere an archaic population
splits 12,000 generations B.P. and introgressed 2000 generations B.P.
at a 2% admixture fraction (section S7). We computed the coalescent
time for segments we classified as archaic and segments we classified as
nonarchaic using the posterior decoding fromMSMCusing a represent-
ative individual from both YRI and MSL (24). We also computed the
scaled divergence time between archaic and nonarchaic segments with
test genomes fromhunter-gatherer populations, Central African Pygmy
populations, and archaic populations. This scaled divergence was com-
puted as the number of mutations specific to the segment subtracted
from the number ofmutations shared between the segment and the test
genome. We divided this number by the number of segregating sites in
the segment to normalize by the local mutation rate.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/7/eaax5097/DC1
Section S1. Current demographic models cannot explain the CSFS
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Section S5. Estimating parameters for the best-fit model of archaic introgression
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Section S7. Local ancestry inference
Section S8. Extended discussion
Section S9. ms command lines
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Fig. S16. Current demographic models from the literature cannot explain the shape of the
CSFS observed in fig. S4.
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Fig. S17. Models involving structure in the ancestor of modern humans and archaics cannot
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back into the modern human ancestor before the out-of-Africa event.
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Fig. S23. Model B.1: Gene flow from the archaic branch into the modern human ancestor
before the out-of-Africa event.
Fig. S24. Model sB.1: Simplified model of gene flow from the archaic branch into the modern
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(e1) and genotyping error in the archaic (e2).
Fig. S39. Parameter estimates using ABC for model A.2 including ancestral misidentification
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Fig. S40. Marginalized joint CSFS of YRI and CEU from simulations.
Fig. S41. Distribution of allele frequencies for neutral archaic SNPs from model C with 13%
introgression and an introgression time of 42 ka B.P.
Fig. S42. Archaic segment frequency map for MSL and YRI.
Fig. S43. CSFS from the baseline model allowing for recurrent mutations.
Table S1. Description of the models examined in this work.
Table S2. We simulated data from the Prüfer et al. (15) model and added in ancestral
misidentification error and genotyping error in the archaic.
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